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Figure S5, Related to Figure 4
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Supplemental Figure Legends  

Figure S1. Tagged Influenza viruses.  

This figure is linked to	
  Figure	
  1.	
  

(A) Schematic map of the compendium of tagged viruses. The ORF of each segment is 

indicated with the Flag tag insertion site (red triangle). (B) Sequencing of RNA from 

tagged viruses passaged and propagated at least two times reveals that the sequence 

encoding the Flag epitope is retained throughout generations. The PB1 has lower read 

coverage compared to the other viruses but still retain higher than 99.5% identity of the 

tag similarly to the rest of the Flag-virus. (C) Cells were infected with WT or PB2-Flag 

virus. After affinity purification proteins were resolved and stained with SYPRO Ruby. 

 

Figure S2. Degree of overlap between significant interactors and external datasets. 

This figure is linked to Figure 2 and Tables S1-S4 with the raw and processed AP-

ms datasets.  

(A) Schematic of AP-ms. (B) Relationship between MiST score threshold and 1) the 

number of interactions identified (scale on right); 2) the spearman correlation between 

replicate experiments (scale on left); and 3) the fraction of interactors identified in 

(Watanabe et al., 2014) accounted for before (1292 proteins) and after applying siRNA 

filtering (323 proteins; scale on left). The MiST score cutoff used in this study is 

indicated (dashed grey line). (C) Fraction of known contaminants (Crapome database, see 

Supplemental Experimental Procedures) identified in replicate control experiments at 

different MiST score thresholds. The MiST score cutoff used in this study is indicated 

(dashed grey line). (D) Venn Diagram representing the overlap between interactors 
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identified in this study (blue circle, MiST threshold of 0.9) and lists of proteins identified 

in (Watanabe et al., 2014). Two diagrams correspond to the two datasets analyzed with 

the inclusion (our dataset) of preys with ≥ 4 interactions (top diagram) and excluding 

preys with ≥ 4 interactions (lower diagram and Table S4). The rationale of filtering out 

host proteins that interact with 4 or more viral proteins was an attempt to remove putative 

contaminants. Since vPOL complex is formed by 3 subunits, we utilize 4 or more as a 

threshold. This analysis is not unbiased and we provide this additionally filtered datasets 

as Table S4. (E) Proteomic interaction network of influenza virus proteins. Interactions 

between influenza virus proteins and human protein complexes from the Comprehensive 

Resource of Mammalian Protein Complexes (CORUM). Viral nodes (proteins) and edges 

(interactions) are colored according to the viral protein. Interactions involving the PB1, 

PB2 and PA viral polymerase complex subunits were grouped (VPol; green). Human 

proteins are colored by the number of viral protein interactions. Edges connecting 

complexed proteins are shown in grey. The network only includes interactions between a 

virus protein and host complex if the viral protein was found to interact with two or more 

proteins in the complex.  

 

Figure S3. Gene ontology analysis of host-viral protein interactions.  

This figure is linked to Figure 2  

ClueGo biological process network of viral protein interactions identified by Mass 

Spectrometry at a score threshold of ≥0.6. Nodes are colored according to major 

biological process groups. Orange lines link each viral protein with GO terms that are 
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significantly enriched among its interacting proteins. Grey lines reflect GO term 

relationships.  

 

Figure S4. Sec61A1 depletion or chemical inhibition suppresses influenza HA and 

NA biogenesis and inhibits viral growth.   

This figure is linked to Figure 3  

A549 cells were treated with a non-targeting control siRNA, and a Sec61A1 siRNA for 

48 hours. (A) Sec61A RNA levels were quantified via RT-PCR Taqman assay. (B) 

Sec61A1 and b-tubulin (loading control) proteins were detected via western blot. 

Representative of two experiments is shown. (C-D) A549 cells were treated with the 

control, Sec61A1 and Influenza NP siRNAs. Effects on release of virus (C) and cellular 

viability (D) are indicated. (E) A549 cells treated with control or Sec61A1 siRNAs were 

infected with a luciferase reporter influenza PR8 virus for seven hours in the absence of 

trypsin. For all panels, *p≤0.05, **p≤0.001, ns=not significant. (F) 35-S Methionine 

incorporation levels were measured by S35 CPM in control and treated with CT8 A549 cells. 

(G) A549 cells were infected with Flag-NA at an MOI=1 and treated with the substrate 

specific Sec61 inhibitor CT8 at the indicated concentrations. Five hours post-infection, 

cells were amino acid starved for 30 minutes, pulsed with 35-S for 30 min and chased 

with cold amino acids for 60 minutes. Post-nuclear lysates were then split and subjected 

to Immunoprecipitation with antibodies that recognize HA trimers (6F12), Flag-NA, and 

MHC-I, followed by splitting each sample in two parts and treating one with PBS and 

another with EndoH. HA, NA and MHC-I amounts were detected by autoradiography 

and HA glycosylation levels were quantified by single densitometry measurements of each 
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sample. Endo H resistance amounts (blue boxes) were calculated relative to the total protein 

amounts. (H) A549 cells were treated with control or Sec61A1 siRNAs.  Five hours post-

infection, cells were processed as in (G) and chased with cold amino acids for the 

indicated times. Total HA was immunoprecipitated and subjected to buffer alone, EndoH, 

or PNGase treatment. The amounts of glycosylated HA were analyzed by 

autoradiography and quantified based on the relative intensity measurements of samples 

resistant to Endo H treatment (single densitometry measurements as in (G)). 

 

Figure S5. CT8 inhibits HIV replication.  

This figure is linked to Figure 4.  

(A) Gating strategy. HEK 293T treated with SEC61 siRNA or control siRNA were 

transfected with full-length HIV-1 genomic constructs (R7/3 GFP and LAI GFP). 24 

hours post transfection cells were stained for gp120 using 2G12 antibody-Alexa647 and 

PG9 antibody-Alexa647. Dead cells were excluded from the analysis using LIVE/DEAD 

Aqua Dead Cell Stain. Histogram shows that silencing of SEC61 does not impact 

efficiency of transfection (n=3). (B) HEK 293T transfected with full-length HIV-1 

genomic constructs (R7/3 GFP and LAI GFP), were treated with increasing amounts of 

CT8. Momomeric gp120 expression was determined by staining with 2G12 antibody and 

trimeric gp120 was determined by PG9 staining followed by Flow Cytometry analysis 

(n=3). (C) Cell viability after CT8 treatment from (B) was determined by Cell titer Glow 

(Promega). 
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Supplemental Tables 

 

Table S1: Processed mass spec data: Identified viral peptides co-

immunoprecipitated by each Flag-tagged viral bait. Related to Figure 2. 

Table S2: List of Gene Ontology terms. Related to Figure 2 and Figure S3. 

Table S3: Raw mass spec data: Identified viral peptides co-immunoprecipitated by 

each Flag-tagged viral bait. Related to Figure 2. 

Table S4: Processed mass spec data: Host protein identified ≥ 4 prey relative to 

Figure S2D. Related to Figure 2.  
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Supplemental Experimental Procedures 

 

 Identification of protein-protein interactions by AP/MS 

We employed an AP-ms strategy previously described (Miller et al., 2015). AP-MS 

experiments for each Flag-tagged viral protein (baits) were performed in two independent 

experiments, and the MiST scoring system (Jager et al., 2012) was used to rank physical 

interactors (preys). MiST processing was done on the complete data matrix of intensity 

scores (Mascott peak area) derived from bait and control experiments (Wild-type, GFP, 

uninfected), ignoring the computation of specificity between baits, selecting the 'HIV 

Trained' running mode as recommended in the documentation, and disabling the filtering 

of singletons. Bait-prey pairs with a MiST score >0.9 and exceeding the MiST scores of 

the prey in all control conditions by at least 10% were selected as significantly enriched. 

Missing values in the data matrix were attributed an intensity score of 0. We additionally 

removed common contaminants that were detected in at least half of the experiments 

present in the Crapome reference database (Mellacheruvu et al., 2013), as well as any 

proteins with identifiers marked as invalid in UniProt release 2015_01. (See 

Supplemental Experimental Procedures for statistical analysis). 

 

Network analysis 

Human:viral protein interaction networks were plotted in CytoScape (version 3.1) (Smoot 

et al., 2011) using the 'spring' algorithm (no weighting). The Biological Process network 

was generated by analyzing all unique preys identified in the MiST analysis using the 
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CytoScape plugin 'ClueGO' (version 2.1.5) (Bindea et al., 2009) and the 'biological 

process' GO database (version 25/01/2015, all evidences without IEA). The following 

parameters were set in the analysis: Use GO term fusion: True; Show only Pathways with 

pV<: 0.05; GO Terms Restriction (GO Tree Levels): Min Level 2, Max Level 10; GO 

Terms Restriction (#/% Genes): Min # Genes 3, Min % Genes 10; GO Terms connection 

restriction (Kappa Score): 0.25; Use GO Term Grouping: True; Leading Group Term 

Based on: Highest Significance, Kappa Score; Initial Group Size: 2; % for group Merge: 

50. Bait sample nodes and their relation (links) to GO nodes were subsequently added 

using a custom Jython script based on the number of significant prey interactions with 

each GO node. A minimum number of 5 interacting preys were required for a link to be 

drawn. 

 

KEGG and GO enrichment analysis 

The set of preys interacting with each viral protein were analyzed for significant KEGG 

category enrichment (p-Value < 0.01, g:SCS method for multiple testing correction, and 

'Best per parent' hierarchical filtering), using 'G:profiler' (Reimand et al., 2011). The 

tabular results were further processed using a custom R-script (available on request) to 

generate figures with three matrix panels indicating the overlap between preys and 

enriched KEGG categories, prey-bait interactions, and enriched KEGG categories for 

each bait. The order of rows and columns were determined by a hierarchical clustering 

algorithm that groups baits and categories with similar enrichment patterns (complete 

clustering based on Spearman correlation distance). GO analysis was performed 

analogously, but using the Bioconductor 'topGO' package (Gentleman et al., 2004) and 
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the 'org.Hs.eg.db' annotation database. Significant enrichment of GO ‘biological process’, 

‘molecular function’ and ‘cellular component’ terms was determined using the 'elim' 

algorithm and 'fisher exact' statistic test. The top 10 significant terms (P < 0.01) were 

selected for each bait and plotted as a graphical summary of the scores (-10 log10 (P-

Value)) for each enriched term (columns) across all baits (rows). Baits were grouped by 

hierarchical clustering (complete, spearman correlation) on the score matrix merged for 

all GO categories (BP, MF, CC). 

 

Comparison with previous interaction datasets 

To compare our interactome analysis with previous studies, we looked at our high-

confidence set of interactors and a list of cellular proteins interacting with transiently 

transfected IAV genes from multiple studies (Bradel-Tretheway et al., 2011; Jorba et al., 

2008; Lin et al., 2012; Mayer et al., 2007; Navratil et al., 2009; Shaw et al., 2008; 

Tafforeau et al., 2011) reviewed in reference (Watanabe et al., 2010). We also analyzed 

the overlap of interactions identified in a transfection-based interaction study (Watanabe 

et al., 2014) and in our study (Tables S1-S4 and Figure S2D). Our analysis suggests that 

the cellular contexts analyzed during infection increase our ability to discover novel 

interactions dependent on viral protein complex formation (i.e. viral RNPs) and between 

viral and host proteins induced as a result of the infection.  

 

Mathematical Modeling of distance relatedness between interactomes 

We used the large-scale interactome derived in reference (Menche et al., 2015) of all 

known human gene interactions to determine the relatedness of pairs of proteins 
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containing one influenza protein and one HIV protein, inferred from HIV infected Jurkat 

cells. For each pair of proteins, we first loaded a list of known genes with which each 

protein interacts.  For influenza proteins, the human proteins they interact with were 

taken from our work, for HIV they were taken from reference (Jager et al., 2012). We 

then calculated s!" the network-based separation of the protein pair, using the formula 

 

s!" = d!" +
!!!!!!!

!
. 

 

The s!" value is the average shortest distance between A-B gene pairs (Menche et al., 

2015). In the above A represents the list of human genes with which a given influenza 

protein in known to interact and B is a list of genes with which a given HIV protein is 

known to interact. It is calculated by measuring how far each influenza gene’s interactors 

are the nearest HIV gene’s interactors in the interactome, as well as how far each HIV 

gene is from the nearest influenza gene, and averaging these measurements. The 

measurement for a gene will be 0 if it is in the data sets of both proteins. The s!" value is 

the average shortest distance within the influenza protein. It is calculated by measuring 

how far each influenza gene is from the nearest influenza gene that is not itself and 

averaging these measurements. The s!" value is the average shortest distance within the 

HIV protein. 

A small, negative s!" value means that a protein pair is closely related, whereas a larger 

or positive s!" value means that a protein pair is not closely related. We ranked the 

Influenza/HIV protein pairs by s!" and found that the most closely related pairs were as 

follows: 
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Rank Influenza Protein HIV Protein  Relatedness (𝑠!") 

1 NA GP160 -0.24 

2 NA VPU -0.19 

3 M2 VPR -0.18 

4 HA GP160 -0.18 

5 M2 GP160 -0.17 

 

For each of these five pairs, we created a list of genes that were either 0 or 1 node away 

from any gene in the other protein dataset. We then generated a gene ontology report for 

each list and analyzed the five reports to see which categories showed up most frequently 

and with the lowest p-value. Categories which were either (a) related to both protein 

localization and the endoplasmic reticulum or (b) related to the signal-recognition particle 

(SRP) showed up in all the reports and had low p-values. 

 

Gene Ontology Category # of Reports 

w/ Category 

p-Value 

SRP-dependent cotranslational protein targeting to 

membrane 

5 3.5 * 10-58 
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protein localization to endoplasmic reticulum 5 1.2 * 10-57 

establishment of protein localization to endoplasmic 

reticulum 

5 1.6 * 10-56 

 

Animal infections 

BALB/c mice were purchased from the Jackson Laboratory (Bar Harbor, ME). Mice 

were anesthetized with ketamine/xylazine and infected with the indicated doses of 

viruses. Body weight was monitored over the course of infection and 80% initial body 

weight was designated as the humane endpoint. No randomization or blinding. Sample 

size n=5 per data point. All experiments involving animals were performed in accordance 

with the Mount Sinai School of Medicine Institution of Animal Care and Use Committee. 

 

siRNA treatment 

To test the effect Sec61A1 silencing, cells were first transfected with Sec61A1 siRNAs 

(Life Technologies s26723 and s26722) or control siRNA using RNAiMax Transfection 

Reagent (Life Technologies) as per the manufacturers instructions. Sec61A1 RNA levels 

were determined via RT-PCR using Taqman primer/probe sets to detect Sec61A1 and 

GAPDH RNA (Applied Biosystems: Hs01037684_m1 and Hs02758991_g1), as well as 

the 18S control primer/probe set (Applied Biosystems 4319413E). For influenza studies, 

A549 cells were silenced for 48 hours before infection. To test HIV-1 Env surface 

expression, HEK 293T cells were transfected with Sec61A1 siRNA (Life Technologies 

s26723) and control in a 6 wells. 24 hours after siRNA transfection, cells were split 1:3 

and re-plated. After an additional 24 hours, cells were transfected with 3 µg/well HIV-1 
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expressing vector R7.3 33A EGFP (Chakrabarti et al., 2002; Lue et al., 2002) (a kind gift 

from Cecilia Cheng-Mayer, Aaron Diamond AIDS Research Center, The Rockefeller 

University) containing the EGFP reporter in the nef position using 3µg/ml 

polyethilenimine from Polysciences (Boussif et al., 1995). Cells were then analyzed for 

Env surface expression by flow cytometry. Infectivity of the viral supernatants was 

measured by infecting TZM-bl reporter cell-line and quantifying β-Galactosidase activity 

48 hours later. 

 

CT8 treatment of Influenza, HIV and DENV 

Influenza: A549 cells were infected for 1hr at 37C at an MOI=0.5, followed by media 

replacement with post-infection media (Opti-MEM+BSA+Pen/Strep, Invitrogen) 

containing 1µg/mL TPCK trypsin and the indicated concentrations of CT8. 24 hours 

post-infection, viral titer was assessed via plaque assay and cellular viability as assayed 

using CellTiter-Glo® Luminescent Cell Viability Assay (Promega).  

HIV: To assess the effect of Sec61 targeting drug CT8 on HIV-1 viral replication we 

used CD4/CXCR4/CCR5+ T-Lymphoblastoid Cell Line A3R5.7. 3*105 cells were 

treated with the indicated concentrations of CT8 and infected with the following HIV-1 

lab adapted viral strains R7.3 33A EGFP, NL4.3 and LAI using an MOI of about 0.002. 

After 24 hours cell were washed 3 times, and thereafter culture supernatants were 

collected every 2 days for quantification. CT8 treatment was kept constant throughout the 

duration of the experiment. Infections were carried out in triplicates. Virus quantification 

was performed using TZM-bl reporter cell-line as described above. Drug toxicity was 

assessed using CellTiter-Glo® Luminescent Cell Viability Assay (Promega). To test the 
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effect of Sec61 chemical inhibitor CT8 on HIV-Env surface expression HEK293T cells 

plated in 24 well plates were transfected with plasmids encoding HIV-1 R7.3 33A GFP 

or LAI GFP. Five hours after transfection cells were treated with increasing 

concentrations of CT8, (0.0016, 0.008, 0.04, 0.2, 1µM or DMSO). 24 hours after 

transfection HIV-1 Env surface expression was measured by flow cytometry. HIV-1 

replication assays were performed as described above. 

DENV: Human DCs were obtained as described in the Supplemental Experimental 

Procedures, and at day 5 of culture, samples of 0.5 x 106 cells were plated in a 12 wells 

plate in 500 µl of DC-medium were treated with the indicated concentrations of CT8 and 

infected for 45 min at 37°C with the indicated MOI of virus (diluted in DC media) or 

with DC medium (mock group) in a total volume of 500µl. After the adsorption period, 

DC medium supplemented with 10% FBS was added up to a final volume of 1ml, and 

cells were incubated for the appropriate time at 37°C. 

 

Bortezomib, Spliceostatin, Castanospermine, Oligomycin A and UK5099 Treatment  

A549 cells were treated with the inhibitors Bortezomib (Selleckchem, S1013), 

Spliceostatin (a generous gift from Kazunori Koide, Department of Chemistry, University 

of Pittsburgh), Castanospermine (Calbiochem, 218775), Oligomycin A (Sigma, 75351) 

and UK5099 (Sigma, PZ0160) in DMEM media for 1hr, media was removed and 

replaced with Luciferase virus/0.3% BSA mixture at an MOI=0.05 and incubated at 

37°C/5% CO2 for 1 hour. Mixture was removed and replaced with complete DMEM 

media containing 0.2ug/mL TPCK Trypsin. Cells were collected at 12, 24, 36 and 48 
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hours after infection, lysed and prepared for Luciferase read out using the Promega 

Renilla Luciferase Assay kit as described in manufacture protocol.  

 

HA Immunoprecipitation and Co-IP  

To IP HA monomers and trimers, A549 cells infected for 7 hours were lysed in 0.2% 

NP40, 50 mM Tris–HCl pH 7.5, 200 mM NaCl, 1 mM EDTA. Post-nuclear lysates were 

split in half and either incubated with the HA head antibody PY102 (Moran et al., 1984) 

to IP total HA, or the stalk specific 6F12 antibody (Tan et al., 2012) to IP trimers. Anti-

mouse IgG Dynabeads (Life Technologies) were used to bind the antibodies and purify 

HA. Washed beads were incubated with 2x Laemmli buffer and proteins were resolved 

via SDS-PAGE.  PY102 was used for western blot analysis. For Co-IP, the human lung 

epithelial A549 cells were infected with HA-Flag containing IAV PR8. HA-Flag enriched 

fractions were obtained by subjecting crude ER extract (see subcellular fractionation in 

Supplemental Experimental Procedures) to immunoprecipitation using Anti-Flag M2 

affinity agarose gel (Sigma). 

 

Biotinylation and isolation of cell surface proteins  

2*107 HEK293T WT and Mut cells were pre-incubated with indicated concentrations of 

CT8 for 2 hours followed by infection with PR8 Flag-HA virus for 10 hours at an 

MOI=5. Cells were washed with PBS and incubated with Sulfo-NHS-SS-Biotin for 30 

min at 4°C for labeling surface proteins. After quenching labeling reaction with the 

Quenching Solution cells were lysed in Lysis Buffer containing protease and phosphatase 

inhibitors (5 cycles 30’ON/OFF with Diagenode Bioruptor). Samples were then 
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incubated 30 min on ice followed by centrifugation (10,000 × g for 2 minutes at 4°C). 

Collected supernatant fractions were subjected to affinity purification using NeutrAvidin 

Agarose Resin that captures biotinated proteins. Beads were washed with Wash Buffer 

containing protease and phosphatase inhibitors and eluted with SDS-PAGE Sample 

Buffer containing 50mM DTT according to the manufacture protocol (Pierce Cell 

Surface Protein Isolation Kit, 89881).  

 

Immunoblotting  

Samples were reduced and denatured in Laemmli buffer (95°C, 5 min) and proteins were 

resolved via SDS-PAGE followed by transferring to PVDF membranes (Bio-Rad). The 

commercially available polyclonal anti-Human Sec61A1 (LifeSpan BioSciences) and the 

monoclonal anti-Flag M2-Peroxidase (HRP) antibodies (Sigma) were used. The anti-

Human Sec61B as previously described (Wiertz et al., 1996) and MHC-I antibodies were 

a gift of Domenico Tortorella (MSSM). Anti-HA antibodies PY102, 6F12 as well as the 

anti-M1/M2 antibodies were generated by the Center for Therapeutic Antibody 

Discovery at Mount Sinai. The polyclonal anti-Human Calnexin was purchased from 

Bethyl (A303-694A) and the monoclonal b-Tubulin antibody was purchased from Cell 

Signaling (2128). The antibodies used for analysis of the concentrated HIV-1 virions 

were: α-HIV-1 p24 monoclonal antibody (183-H12-5C) and antiserum to HIV-1 gp120 

(DV-12) both from the NIH AIDS Reagent Program. 

 

Subcellular Fractionation 

A549 and HEK293 cells were infected with HA-Flag containing IAV PR8. To prepare 
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the crude ER extract homogenized cells were lysed in the buffer containing 1% Chaps, 50 

mM Tris-HCl [pH 7.5], 150mM NaCl, 5 mM MgCl2, protease inhibitor cocktail (Roche), 

phosphatase inhibitor (Sigma), and subjected to centrifugation (14,000 g, 15 min) to 

separate soluble ER fraction from nuclear fraction. The ER extract was layered for 

separation by ultracentrifugation on Optiprep (Sigma) discontinuous gradients prepared 

in the buffer containing 250mM Sucrose, 6 mM EDTA, 10 mMTris-HCl [pH 7.5].   

 

Flow cytometry 

For influenza studies, A549 cells were siRNA treated for 48 hours. Cells were infected at 

an MOI=0.8 for 7 hours. Cells were then fixed in 4% PFA in PBS.  Cells were blocked in 

5% BSA in PBS for 1hr on ice.  Primary antibodies against HA trimers (6F12 (Tan et al., 

2012) conjugated to AF-488), the M2 surface protein (E10, courtesy of Tom Moran), or 

MHC-I (BD #555554) were diluted in 5% BSA in PBS as appropriate and incubated for 

1-2 hours on ice. Secondary antibodies Alexa-fluor-488 anti-mouse IgG were diluted 

1:1000 in PBS/BSA and incubated with the M2 samples for 40 min on ice. Samples were 

thoroughly washed and data was collected on a BD FacsCalibur (Mount Sinai Shared 

Resource Core).  Data was analyzed using FlowJo.  For HIV-1 experiments 293T cells 

were transfected with HIV-1 R7.3 33A EGFP and HIV-1 LAI-GFP using 3 mg/ml 

polyethylenimine (Polysciences). Surface gp120 trimers were detected via staining with 

the human monoclonal antibody PG9 and Alexa-fluor-647 secondary antibody. 

Monomeric gp120 was detected using the human monoclonal antibody 2G12 and Alexa-

fluor-647 as a secondary antibody. Dead cells were stained by LIVE/DEAD Fixable 

Aqua Dead Cell Stain (Life Technologies) and excluded from the analysis. Data were 
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collected on a BD™ LSR II flow cytometer and analyzed using FlowJo. In order to 

compare different antibodies, flow cytometry data are shown as fluorescent index where 

the mean fluorescent index of each point is multiplied by the percentage of double 

positive cells devoid of non specific background binding.   

 

Glycosidase treatment and pulse-chase 

A549 cells were infected at an MOI=1 for 1 hour. 7 hours post-infection, cell lysates (or 

immunoprecipitated HA) were treated with EndoH (NEB), PNGaseF (NEB), or buffer 

alone for 2 hours at 37C. Reactions were terminated by the addition of 2x Laemmli 

sample buffer.  For pulse chase, A549 cells were infected as above. After 5 hours, cells 

were starved for Met and Cys for 30min. After starvation, cells were pulsed with 

EXPRE35S35S Protein Labeling Mix for 30 min. Labeling media was removed, and 

complete DMEM was added to chase for the indicated times. Total HA was 

immunoprecipitated with the PY102 antibody overnight at 4C. Immunoprecipitated HA 

was treated with EndoH, PNGase F, or buffer as described above. Labeled proteins were 

resolved via SDS-PAGE, gels were dried and exposed together on the same film at the 

same time for 18 hours.  

 

Analysis of host factors controlling DENV replication 

Knockdown of host factors was done using endonuclease-derived siRNAs (esiRNAs). 

esiRNAs targeting approximately 250nt of the target gene were designed using the 

DEQOR algorithm and synthesized as previously described (Roguev et al., 2013). For 

knockdown, 10ng of esiRNA were reverse transfected into Huh7 cells in 96-well format 
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with DharmaFECT4 (Thermo Fisher Scientific, T-2004-01) according to manufacturer 

protocols. Cells were infected with Renilla luciferase reporter virus (Samsa et al., 2009) 

at 72 hours post-transfection at an MOI of 0.1, and Renilla luciferase activity was 

measured 48 hours post-infection using the Renilla Luciferase Assay System (Promega, 

E2810) and a Veritas microplate luminometer according to manufacturer protocols. 

Knockdown was assessed by RT-qPCR using the CellAmp Direct RNA Prep kit (Takara, 

3733), the SensiFAST One-Step RT-qPCR kit (Bioline, BIO-72001) and the BioRad 

CFX-96 thermocycler. 

 

Generation of monocyte-derived dendritic cells (MDDCs) 

Human MDDCs were obtained from healthy human blood donors (New York Blood 

Center), following a standard protocol. Briefly, after Ficoll-Hypaque gradient 

centrifugation, CD14+ cells were isolated from the mononuclear fraction using a MACS 

CD14 isolation kit (Milteny Biotec) according to the manufacturer’s directions. CD14+ 

cells were then differentiated to naïve DCs by incubation during 5 to 6 days in DC 

medium (RPMI supplemented with 100 U/ml L-glutamine, 100 g/ml penicillin-

streptomycin, and 1 mM sodium pyruvate) with the presence of 500 U/ml human 

granulocyte-macrophage colony-stimulated factor (GM-CSF) (PeproTech), 1,000 U/ml 

human interleukin 4 (IL-4) (PeproTech), and 10% FBS (Hyclone). The purity of the 

MDDCs was confirmed by flow cytometry analysis. 

 

RNA isolation (DENV) 
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RNA from different cells was extracted using Quick RNATM MiniPrep  (Zymo 

Research). The concentration was evaluated in a spectrophotometer at 260 nm, and 1000 

ng of RNA were reverse transcribed using the iScript cDNA synthesis kit (Bio-Rad) 

according to the manufacturer’s instructions.  

 

qRT-PCR (DENV) 

Evaluation of the expression of viral RNA was carried out using iQ SYBR green 

Supermix (Bio-Rad) according to the manufacturer’s instructions. The PCR temperature 

profile was 95°C for 10 min, followed by 40 cycles of 95°C for 10 s and 60°C for 60 s. 

Expression levels for DENV RNA was calculated based on the CT values using rsp11 

housekeeping gene to normalize the data. 

 

DENV Viruses 

Dengue virus serotype 2 (DENV-2) strains 16681 was used in this study. DENV was 

grown in C6/36 insect cells for 6 days. C6/36 cells were infected at an MOI=0.01, and 6 

days after infection, cell supernatants were collected, clarified, and stored at 80°C. The 

titers of DENV stocks were determined by limiting-dilution plaque assay on BHK cells.  

 

Cytotoxicity assay 

In order to quantify the toxicity of MDDCs treated with CT8, The CytoTox 96® Non-

Radioactive Cytotoxicity Assay (Promega) was used according to manufacturer’s 

instructions. Briefly, MDDcs were incubated with either 100nM or 500nM of CT8 or 

same final % of DMSO in DC media and release of LDH was monitored for 24, 48, and 
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72 hpt. As positive control MDDCs were frozen and thawed 3 times at the specific times 

and supernatant was centrifuged at full speed. 

 

Statistical analysis 

Statistical analysis between datasets was performed using a two-tailed student’s t-test. 

Differences were considered to be statistically significant at p-values at or below 0.05. 
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